4

S . RISC MICROPROCESSOR' ARCHITECTURE

IMPLEMENTING MULTIPLE TYPED REGISTER SETS

10 Inventors:

Z: Sholong Chen

= 3 Sanjiv Garg

T—Z Derek J. Lentz

::: Le Nguyen

= [no A ,> -

1s ROSS- E 'ION

Applications of @particular interest to the present

application, include:

WP2/RCC/SMOS/7988. 004 -Page 1-
Attormey Decket No.: SWOS7988/MCF/GBR/RCC :

5

20

25

< > s
; D eritax N~ —, filea

Qu;ng—mang:
s 7 Q.

The above—identified Applicatio’ns_ are hereby incorporated

herein by reference, their collective teachings being part of the

present disclosure.

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates generally to microprocessors,
and more specificai-ly to a RISC microprocessor having plural,

symmetrical sets of registers.

De: ipti £ ¢l Bac} 3

Ifx addition to the usual complement of main memory storage
and secondary permanent storage, a microprocessor-based computer
system typically also includes one or more general purpose data
registers, one or more address registers, and one or more status
flags. Previous systems have included integer registers for

8

WP2/RCC/SMOS/ 7988, 004 . 1ge 2
Attorney Docket Na.: SwMOSY988/7MCF/GBR/RCC

4

WQMKU4

h
2..!!

H
()

a

bt 82

3
!

U A A S

L)

20

25

. WPZ/RCC/SMOS/7988. 004

® .
,, !

-3 -
holding integer data and floating point registers for holding
floating point data. Typically, the status flags are used for
indicat_ing certain conditions resulting from_the mdfst recently
ekecuted operation. There generally are status flags for
indicating whether, in the previous operation: a carry occurred,
a negative number resulted, and/or a zero resulted.

These flags prove useful in determining tﬁe outcome of
conditional branching within the flow of program co;xtrol. For
example, if it is desired to compare a first number to a second
number and upon the cor;ditioné that the two are equal, to branch
to a given subroutine, the microprocessor may compare the two
numbers by subtrécting one from the other, and set:ting or
clearing the appropriate condition flags. The numerical value
of <the result of the subtraction need not be stored. A
conditional branch instruction may then be executed, conditioned
upon the status of the zero flag. While being simple to

implement, this scheme lacks flexibility and power. Once the

comparison has been performed, no further numerical or--other

~operations may be performed before the conditional branch upon

the' appropriate flag; otherwisve, the intervening instructions
will overwrite the condition flag values 'resulting from the
comparison, likely causing erroneous branching. The scheme is
further complicated by tt;e fact that it may be desirable to form
greatly complex tests for branching, rather than the simple
equality example éiven above.

For example, assume that the program should branch to the

subroutine only upon the condition that a first number is greater

Attorney Docket No.: SWOS7988/WMIF/GBR/RCC

-
(=)

T

y
{

R I S W R

® ®

-4~

than a second number, and a third number is less than a fourth
number, and a fiftﬁ number is equal to a sixth number. It would
be necessary for previous microprocessors to perfoifm a lengthy
series 'of comparisons heavily interspersed with com_iit-ional'
branches. A particularly.undesiréble feature of this serial
scheme of comparing and brancihitng is observed in any
microprocessor having an'instruction pipeline.

In a pipelined microprocessor, more than one instruction is
being executed at any given time, with the plural instructions
being in different stages of execution at any éiven‘ moment. This
provides for vastly improved throughpuﬁ. A typical pipeline
microprocessor may include pipeline stages for: (a) fetching an
instruction, (b) decoding the instruction, (c) obtaining the
instruction’s operands, (d) executing the instruction, and
'(e') storing the results. The problem arises when a conditional
branch instruction is fetched. It may be the case that the
conditional branch’s condition cannot yet be tested, as the
operands may not yet be cfalculated, if they are to result from
operatiorg;_ Y}}_{Lc_:h are yet in the pipeline. This results in a
"p’ipeline stall®, which dramatically slows down the processor.

Another shortcoming of previous microprocéssor-based systems
is that they have included only a single set of registers of any
given data type. 1In previous' architectu;r:es, when an increased
number of registers has been desired within a given data type,
the solution has been simply to increase the size of the single
.set of those type of fegistérs. This may result in addressing

problems, access conflict problems, and symmetry problems. .

WP2/RCC/SMOS/7988. 004 -Page &-
Attorney Oacket No.: SMOS?988/MCF/GBR/RCC

EE]

20

25

o - o

-5-

On a similar noté; previous architectures have restricted
each given register set to one respective numerical ,data type.
Various prior systems have allowed general purpose éegisters to
hold either numerical data or address "data®, but the present
application will not use the term *“data® to include addresses.
‘'What is intended may be best understood with refered&e to two
prior systems. The Intel 8085 microprocessor includes a register
pair *HL*" which can be used to hold either two bytes of numerical
déta or one two-byte address. The present application’s
improvemenf'is not directed to that issue. More on point, thé-
Intel 80486_microp£ocessor includes a set of general purpose
integer data registers and a set of floating point registers,
with each set being limited ﬁo its respective data type, at least
for purposes of direct register usage.by arithmetic. and logic

units.

This proves wasteful of the microprocessor’s resources, such

as the available silicon area, when the microprocessor is

performing operations which do not involve both data types. For

example,ﬂyser agp}ications.frgqgggtly involve exclusive_]_.y integer
operations, and perform no floating point operations whatsoever.
When such a user application is run on a previous microprocessor
which includes floating point registers (such as the 80486),

those floating point registers remain idle during the entire

execution.

Another problem with previous microprocessor register set
architecture is observed in context swiﬁching or state switching

between a user application and a higher access privilege level

WP2/RCC/SMOS/7988. 004 -P fi/:j—\

Attorney Dockst Ko.: SMOS7988/MCF/GBR/RCC

o

B W

o
\n

20

25

® - ®
~ ,)

.6

entity such as the operating system kernel. When control within
the microprocessor switches context, mode, . or .state,’.the
operating system kernmel or other entity t;gf“which": control is
passed typically does not operate on the same data which the user
application has been operating on. Thus, the data registers
typically hold data values which are not useful to the new
control entity but which must be maintained uﬁﬁil the user
application is resumed. The kernel must genera-ily have registers
for its own use, but typically has no way of knowing which
registers are presently i;x use by the user application. In orxder
to make space for its own dai:a, the kernel must swap out or
otherwise store the contents of a predeterminéd subset of the
regis:ters. ‘I‘hi‘s results in considerable loss of processing time
to overhead, especially if the kernel makes repeated, short-
duration assertions of control.

On a related note, in prior microprocessors‘, when it is
required that a "grand scale*" context switch be made, it has
been necessary for the microprocessor to expend even fg"reater
amounts of processing resources, including a generally large
number of processing cycles, to save all data . .and state

information before making the switch. When context is switched

~back, the same performance penalty has previously been paid, to

restore the system to its former state. For example, if a
microprocessor is executing two user applications, each of which
requires ’che.,full complement of registers of each data type, and
each of which may be in‘vgrious stages of condition code setting

operations or numerical calculations, each switch from one user

WP2/RCC/SMOS/7988. 004 ’ -Page
Attorney Docket Na.: SMOS7588/MCF/GZR/RCC

B D
o

i
i

T ERCE L

£.3

20

25

. 35
. S,
) ; §

-7 -

application to the other necessarily involves swapping or
otherwise saving the contents of every data register and state
flag in the system.” This obviously involves a gréat deal of
operational overhead, resulting .in significant performance
degradation, particularly if the main or the sgcondary storage
to which the registers must be saved is significantly slower than
the microérécéssor itself.

Therefore, we have discovered that it is desirable to have
an improved microprocessor architecture which allows the various
component .cénditions of a complex condition to be calculated
without any intervenim; ..c:nditional branches. We have further
discovered that it is éesirablé that the plural simple conditions
be calculable in pafallel, to improve throughput of the
microprocessor. |

We have also disco_vered that it is desirable to have an
architecture which allows multiple register sets within a given
data type.

Additionally, we _have discovered it to be desirable for a
microprocessor’s floating point registers to be usable as 'integgr
registers, in case the available integer registers are inadequate
to optimally to hold the necessary émount of integef:' da_t;a.
Notably, we have discovered that it is desirable that such
re-typing be completely transparent to the user application.

We have discovered it to be highly desirable to have a
microprocessor which provides a dedicated subset of registers
‘which are reserved for use by the kernel in lieu of at least a

subset of the user registers, and that this new set of registers

WP2/RCC/SMOS/7538. 004 age 7
Attorney Docket Ko.: SMIS7988/uIF/GBR/RCC

X

20

25

L @,

—-8-

should be addressable in exactly the same manner as the register
subset which they replace, in order that the kernel may use the
same register addressing scheme as user applications. We have

further observed that it is desirable that the switéh between the

two subsets of registers require no microprocessor overhead

cycfes, in order to maximally utilize the microprocessor’s.

resources.

Also, wWe have discovered it to be desirable to have a

microprocessor architecture which allows for a *“grand scale*

context switch to be performed with minimal overhead. In this

vein, we have discovered that is desirable to have an

architecture which allows for plural banks of register sets of

each type, such that two or more user ‘applications may be

‘operating in a multi-tasking environment, or other “simultaneous"

mode, with each user application having sole access to at least

a full bank of registers. It is our discovery that the register

addressing scheme should, desirably, not differ between user

applications, nor between register banks, to maxj.mize simplicity
of the user applications, and that the system sho~§{§: provide
hardware support for sthchlng between the register banks so that-
the user applications need not be aware of which register bank
which they are presently using or even of the existence of other
:::eg:i.st:erj banks or of other user applications.

These and other advantages of our invention will be
appreciated with reference to -the following description of our

invention, the accompariying drawings, and the claims.

WP2/RCC/SHO0S/7988, 004
Attorney Docket No.: SMOS7988/MCF/GBR/RCC

),

20

25

- _9_'
MMAR E E I

The present invention prov1des a regiéter file- system
comprising: an integer register set includlng fzrst and second
subsets of integer registeré,'and a shadow'subset; a re-typable'
set of registers which are individually usable as integer
registers ox as ~ff6ating point registers; and a set of
individually addressable Boolean régisters. |

The present invention includes integer and floating point

functional units which execute integer instructions accessing the

intéger register set, and which operate in é plurality of modes.
In any mode, instructions are granted ofdinary access to the
first subset of integer registers. In a first mode, instééctions
are also granted ordinary access to the second subset. However,
in a second mode, instructions attempting to access the second
subset are instead granted access to the shadow subset, in a
manner which is transparent to the instructions. Thus, routines
may be wrlééen.wlthout regard to which mode they will operate in,
and system routines (which operate in the second mode) can have
at least the second subset seemingly at their disposal, without
having to expend the otherwise-required overhead of saving thé
second subset’s contents (which may be in use by user processes
operating in the first mode).

The invention further includes a plurality of intgger
register sets, which are individually addressable as specified

by fields in instructions. The register sets include read ports

and write ports which are accessed by multiplexers, wherein the

WP2/RCC/SUOS/7988. 004 -fage p§-
Attorney Docket No.: SWMOS7988/MCF/GBR/RCC

20

25

§
- “~
.» . ' ‘} '

-10-
multiplexers -are controlled by contents of the " register
set-specifying fields in the instructions.

.One of the integer register sets is also isable as a
floating pqint register set. 'In one embodiment, this éet is
sixty-fq@f bits wide to holddoubl"e-precisi;m floating point
data, bﬁt only the low order thirty—two-bits are used by integer
instrucﬁions. l

The invention. includes functional units for performing
Boolean operations, and further includes a Boolean register set-
for holding :resuits of the Boolean operationé such that no
dedicated, fixed-location status flags are required. The integer
and floating point functional units-execute numerical comparison
instructions, which specify individual ones of the Boolean
registers to hold results of the comparisons. A Boolean
functional unit executes Boolean combinational instructions whose
sources and destination are specified registers in the'Boolean
regisfer- set. éﬁ;s, the present inveﬂtion may perform
conditional branches upon a single result of a complex Boolean
function. without intervening conditional branch instrqctions
between the fundamehtal parts of the complex Boolean function,
minimizing pipeline disruption in the data processor. -

Finally, there are multiple, identical'regisﬁer'banks in the
system, each bank inpluding the above-descfibed register sets.

A bank may be allocated to a given process or routine, such that

the instructions within the routine need not specify upon which

bank they operate.

WP2/RCC/SMOS/7988.004 - -Page 10-
Attorney Docket No.: SMOS7988/MCF/GBR/RCC

20

25

“'} ‘}

-11-~

W

Fig. 1 is a block diagram of the instruction exegqution unit
of the microprocessor of the present invention, éhpw&ing the
elements of the register file.

L ST , .

Figs. 2%4 are simplified schematic and block diagrams of the
floating point, integér and Boolean portions of the inst}uction
execution unit of Fig. 1, respectively.

Figs. 5-6 are moxre detailed views pf the floating point and
integer portions, respectively, showing the means for selecting
between register sets.

Fig. 7 illustrates the fields of an exemplary microprocessor

instruction word executable by the instruction execution unit of

Fig. 1.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. REGISTER FILE

Fig. 1 illustratés the basic components of the instruction
execution unit (IEU) 10 of the RISC (reduced instruction set
computingn) processor of the present invention. The IEU 10
includes a register file 12 and an execution engine 14. The
register file 12 includes one or more register banks 16-0 fo
16-n. It will be understood that the structure of each register
bank 16 is identical to all of the other register banks 16.
Therefore, the present application will describe only registerxr
bank 16-0. The register bank include.s a register set A 18, a

register set FB 20, and a register set C 22.

WP2/RCC/SMO0S/7988. 004 -Page j11.
Attorney Docket No.: SMOS7988/KCF/GBR/RCC

*

20

25

-12- .
In general, the invention may be characterized as a RISC

microprocessor having a register file optimally configured for

use in the execution of RISC instructions, as :oppoged to

‘conventional register filesAwhiqh are sufficient for use in the

execution of CISC (complex instruction set computing)

.instructions by CISC processors. By having a specially adapted

register f£file, the exeqution engine of the microprocessor‘s IEU
achieves greatly improved performance, both in terms of reéesource
utilization'andvin terms of raw throughput. The general concept
is to tune a register seg to a RISC instruction, while the

specific implementation may involve any of the register sets in

the a}chitecture.

A. Register Set A

Register set A 18 includes integer registers 24 (RA[31:0]),
-each of which is adapted to hold an integer value datum. In one
embodiment, each integer may be thirty-two bits wide. The RA[]
integer registers 24 include a first plurality 26 of integer
registers (RA{23:0]) and a second plurality 28 of integer

registers (3A[31:24]). The RA[] integer registers 24 are each

-of Edentiéélvstrucﬁure, ahd éﬁe eéch addressable in the same
manneﬁ, albeit with a unique address within the inteéer register
set 24. For example, a first integer register 30 (RA[0]) is
addressable at a zero offset within the integer register set 24.

RA[O0] always contains. the value zero. It has been observed
that user applications and other programs use the constant value

zero more than any other constant value. It is, therefore,

WP2/RCC/S10S/7988. 004 -Page 12-
Attoraey Oocket No.: SMKOS7988/MCF/GBR/RCC

wu

Eg

]
4

20

25

) o
[
~— ,)
~-13~

desirable to have a zero readily available at all times, for
clearing, éomparing, and other purposes. Another advantage of
having a constant, hard-wired value in a. givef; register,
regardiess of the particular value, is that the given register
may be used as the destination of any instruction whose results
need not be saved.

2Also, this means that>the fixéd register will never be the
cause of a data dependency delay. A data dependency exists when
a “slave"® instruction reéuires, for one or more of its operands,
the result of a "master" instruction. In a pipelined processorg
this may cause pipeline stalls. For example, the master
instruction, although-gccurring earlier in Fhe code segquence
than the slave instruction, may take considerably longer to
execute. It will be -readily appreciated that if a slave
“jncrement and store® instruction operates on the result data of
a master 'quadruplé—word integer divide*® instruction, the slave
instruction will be fetched, decoded, and aw;;ting execution many
clock cycles before the master instruction has finished
execution. . However, in certain instances, the numerical result
of a master instruction is not needed, and the master instruction
is executed for some other purpose only; such as to set condition
code flags. If the master instructipn's destination is RA[O],
the numerical results will be effectively discarded; The data
dependency checker (not shown) of the IEU 10 will not cause the
slave instruction to be delayed, as the ultimate result of the

master instruction -- zero -- is alreddy known.

WP2/RCC/SM0S/7988. 004
Attorney Docket No.: SMOS7988/WCF/GBR/RCC

N2

I

A TR N S S M
w

20

25

o @
NS . ,)
-14--

The integer register set A 24 also includes a set of shadow
registers 32 (RT(31:24]). Each shadow register can hold an
integer value, and is, in one embodiment, also thitfy-two bits
widg, Each shadow register is addressable as an offsét in the
same mahneé in which each integer register is addressable.

“Finally, the register set A includes an IEU mode integer
switch 34. The switch 34, 1ike other such elements, need not
have a physical embodiment as a switch, so long as the
corresponding logical functionality is provided within the
register sets: The IEU modé integer switch 34 is coupled to the
first subset 26 of integer registers on line 36, to the second
subset of integer registers 28 on liné-38, and to the shadow
registers 32 on line 40. All accesses to the register set A 18
are made through the IEU mode integer switch 34 on line 42. Any
éccess requeét to read or write a register in the first subset
RA[23:0] is passed automatically through the IEU mode integer
switch 34. However, accesses tohﬁn integer register with an
offset outside the first subset RA[23:0] will be directed either
to the second subset RA[{31:24] or the shadow registers RT[31;24]}],
depending upon the operational mode -of the execution engine 14. ,

The IEU mode intéger switch 34 is responsive to a mode
control unit 44 in the ekecution engine 14. The mode control
unit 44 pfovides pertinent state or mode information about the
IEU 10 to the IEU mode integer switch 34 on line 46. When the
execution engine performs .a context switch such as a transfer
to kernel mode, the mode control unit 44 controls the IEU mode

integer switch 34 such that any requests to the second subset

-
.

WP2/RCC/SM0S/7988. 004 -Pag
Attorney Docket No.: SMOS7988/UCF/GBR/RCC

20

25

_subset Ra[31:24]) onto a - stack, or other

3\
N ~
H -
: ‘

-15-

RA[31:24] are re-directed to the shadow RT[31:24]}, using the same
requested offset WLth:Ln the integer set. Any 6perating sys;tem
kernel or other then-executing entity may thus have apparent
access to the second subset RA[{31:24] without the
other;zise—required overhead of swapping the contents of the
second- subset RA[31:22] out to main memory, or pushing the second
conventional
register-saving technique.

When the execution engine 14 returns to normal user mode and
control passes to the originally-executing userx application, the
mode c;ontrol unit 44 controls the IEU mode integer switch 34 such
that access is again directed to the second subset RA[.3_1:24].
In one embodiment, the mode control unit 44 is responsive to the
present state of interrupt enablement in the IEU 10. In one
embodiment, the execution engine 14 includes a processor status
register (PSR) (not shown), which includes a one-bit £flag

(PSR[7]) indicating whether interrupts are enabled or disabled.

Thus, the line 46 may simply couple the IEU mode integer switch

34 to the interrupts-enabled flag in the PSR. While interrupts

are disabled, the IEU 10 maintains access

RA(23:0]},

to the integers
in order that it may readily perform analysis of
various data of the user application. This may allow improved

debugging, error reporting, or system performance analysis.

B. Register Set FB

The re-typable register set FB 20 may be thought of as

~including floating point registers 48 (RF{31:0]); and/or intéger

WP2/RCC/SM0S/7988. 004

-Page/fl
Attorney Docket No.: S“OS7988/|IC}'/GBR(RCC

20

25

" registers 50 (RB(31:0]).

' .. ‘\.
g <

~-16-
When neither data type is implied to
the exclusion of the other, this application will use the term
RFB(]. In one embodiment, the floating point rec_.;'isters RF(}

occupy the same physical silicon space as the integer registers

RBf{]). 1In one ‘embodiment, the floating point registers RF[] are

sixéy—four bits wide and the integer registers RB[] are

thirty-two bits wide. Tt will be understood that if
double—preci‘siop floating point numbers are not required, the
register set RFB[] 'may advantageously be’ cogstructed in. a
thirty-two-bit width to save the silicon area otherwise required
by the extra thirty-two bits of each floatiﬁg point register. .
Each individual register in the register set RFB{] may hold

either a floating point value or an integer value. The register

set RFB[] may include optional hardware for preventing accidental

access of a floating point value as though it were an integer

value, and wvice wversa. In one embodiment, however, in the

interest of simplifying the regis'te'r set RFB[], it is simply
left to the software designef to ensure that no erroneous usages
of individual registers are made. Thus, the .execution engine 14
simply makes an access request on line 52, specifying an offset
into the régister set RFBI[], without specifying whether . the
registe-r at the given offset is intended to b_e used as a' floating

point register or an integer register. Within the execution

engine 14, various entities may use either the full sixty-four
bits provided by the register set RFB{], or may use only the low

order thirty-two bits, such ‘as in integer operations or

single-precision floating point operations.

«P2/RCC/SHOS/7988. 004 -Page 16-

Attorney Docket No.: SMOS7988/MCF/GBR/RCC

A

20

25

@ ()

N

-17-

A first registerx RFB[0] 51 contains the constant value zero,
in a form such that R3{0] is a thirty-two-bit irgteg_er Zexro
(0000}.4) and RF[0] is a sixty-four-bit fl.oa;ting-’:point zero

(00000000},) - This provides the same advantages as described

above for RA[O].

C. Bg_g_i_s.i:ﬁr_s_el_c

The register set C 22 includes a plurality of Boolean
registers S4 (RC[31:0]). RC[] is also known as the 'condition‘
status register® (CSR). The Boolean registers RC{] are each
identicai in structure and addreésing, albeit that each is
individually addressable at a unique address or offset within
RC{].

In one embodiment, register set C further includes a
“previous condition status register"® {PCSR) 60, and the register
set C also includes a CSR selector unit 62, which is responsive
to the mode control unit 44 to select alternatively between the
CSR 54 and the PCSR 60. In the.one embodiment, the CSR is used
when interrﬁpts are enabled, and the PCSR is used when interrupts
are disabled. The CSR and PCSR are identical 4in all other
respects. In the one embodimént, when interrupts are set to bé
disabled, the CSR selector unit 62 pushes the contents of the QSR
into the PCSR, overwriting the former contents of the PCSR, and
when interrupts are re-enabled, the CSR selector unit 62 pops the
contents of the PCSR back into fhe CSR. In other embodiments it
may be desirable to merely alternate access between the CSR and

the PCSR, as is done with RA(31:24] and RT[{31:24]. In any event,

WP2/7RCC/SMOS/7988. 004
Attoraey Docket Nao.: SHOS7988/UCF/GBR/RCC

20

25

- @ @

-18-~-

the PCSR is always available as a thirty-two-bit “special

register-, :

None of the Boolean registers is a dedicated coxiiiiti_.on flag,
unlike the Booiéan regis};ers in pfevious;y.kﬁown microprocessors.
That ié, the CSR 54 does not include a- dediclated carry flagqg, .nor
a dedicated a minué flag, nor a dedicated flag indicatimj
equality of a com_parison or a zero subtraction result. Rather,
any Boolean register may be the dest_:i.natibn of the Boolean result
of any Boolean operation. As with the dther register sets, a
first Boolean register 58 (RC[0]) always éontains the value zero,
to obtain thel advantages explained above for -RA[O]. In the
prefe_rred embodiment', each Boolean register is one bit wide,

indicating one Boolean value.

II. EXECUTTON ENGINE

The execution engine 14 includes one or more integer
functional units 66, ohe or more floating point functional units
68, aﬁd one or more Boolean functional units 70. The functional
units 'e.x_e.cut.e instructions as will be explained below. Buses 72,

73, and 75 connect the wvarious elements of the IEU 10, and will

" "each be understood to reprégént data, add"ress, and cor-lflfol paths.

AL Instruction Format
Figqg. 7.illustra'tes one 'exemplary format for an integer
instruction which the execution engine 14 may execute. It will

be understood that not all instructions need to adhere strictly

to the illustrated format, and that the data processing system

WP2/RCC/SNQS/T7988. 004 -Psge 18-
Attornsy Docket No.: SMOS7988/MCF/GBR/RCC

_ \

-19-
includes an instruction fetcher and decoder (not shown) which are
adapted to operate upon varying format instructions. ;The single

s

example of Fig. 7 is for ease in explanation only. Throughout

this Application the identification I{] will be used to identify

various bits of the instruction. I[31:30'l are reserved for
future implementations of the execution-engine 14. I{29:26]
identify the instruction class of the particular instruction.

Table 1 shows the various classes of instructions performed by

the present invention.

TABLE 1
Instruction Classes
0-3 Integer and floating point
register-to-register instructions
4 Immediate constant load
5 Reserved -
6 Load
7 Store
8-11 Control Flow
12 Modifier
13 Boolean operations
14 Reserved
15 Atomic (extended)

=

30

35

Instruction classes of particular interest to this
Application include the Class 0-3 register-to-register
instructiéns‘and the Class 13 Boolean oﬁerations. While other
classes of instructions also operate upbn the register file 12,
further discussion 6f those classes is not believed necessary in
order to fully understand the brésent invention.

I[25] 4is identified as BO, and indicates whether the
destination register is in register set A or register set B.

I[24:22) are an opcode which identifies, within the given

WP2/2CC/SK0S/7988. 004
Attorney Docket No.: SWOS7988/MCF/GBERCC

o ' J
-20-
instruction class, which specific function is to be performed.
For example, within the register-to-register classes, an opcode
may spécify *addition®. I[21] identifies t<he addr’éssing. mode
which is to be used when performing the instruction - either
5 register source' addressing or immediate .'source addressing.
I[26:—16] identify the destination register as an offset within
the régister set indicated by BO. 1I[15] is identified as Bl and

jndicates whether the first operand is to be taken from register

set A or register set B. I[14:10] identify the register offset

I i 1

from which the first operand is to be taken. I{9:8] identify a

function selection -- an extension of the opcode I(24:22].

|

I[{7:6] are reserved. I{s] is identifi;_d as B2 and indicates

i
i

whether a second operand of the instruction is to be taken from

register set A or register set B. Finally, I[4:0] identify the

U

15 register offset from which the second operand is to be taken.

L 0

With reference to Fig. 1, the integer functional unit 66 and

H
t

it

floating point'functional unit 68 are equipped to perform integer
comparison instructions and floating point comparisons,

respectively. The instruction format fox the comparison

26 A instruction is é_ubstantially idéntical t;- ;:hat sf\own ;"Ln Fig. «7,
with the caveat _that various fields may advantageously be
identified by slightly different names. I[20:16] identifies the
des‘tinatic;n register where the result is to be stored, but the
addressing mode field I[21] does not select between register sets

25 A or B. Rather, the addressing mode field indicates whether the
second source of the comparison is found in a register or is

immediate data. Because the comparison is a Boolean type

WP2/RCC/SWOS/7988. 004
Attorney Docket No.: SMOST988/MCF/GBR/RCC

E

15

20

25

® @

-21-

instruction, the destination register is always found in register
set C. 211 other fields function as shown in Fig. 7. In-
performing Boolean operations within the integer d;d floating -
point functional units, the opcode and functien select fields
identify'which.Boolean.condition is to be tested for in comparing
the two operands. The;integer and the floating point functional
units fully support the IEEE standards for numerical comparisons. .
The IEU 10 is a locad/store machine. This means that when

the contents of a register are stored to.memory or read from,
memory, an address calculetion must be performed in order to
determine which location in memory is to be the source or the
destination of the store or load, respectively. When ti}s is
the case, the destination :egister fieLd I[20:16] identifies the
register which is the destination or the source of the load or
store, resfectively, The source register 1 field, I{14:10],
identifies a register in either set A or B which contains a base
address of the memory location.. In one embodiment, the sourxce
register'z field, 1{4:0}, jdentifies a register in set A or set
B which contains an index or an offset from the base. The
load/store address is calculated.by adding the Lndex to the base.
Tn another mode, I[7:0] include immediate data whlch are to be

added as an index to the base.

B. Operation of the Instruction Execution Unit 'and
Register Sets

It will be understood by those skilled in the art that the

integer functional unit 66, the floating point functional unit

\'(PZIRC;IS!IOSI7988. 004
Attoraey Docket No.: SWOS7988/MCF/GBR/RCC

“oppt

S~
N
- hS
[v
i v

-22-
68, and the Boolean functional unit 70 are responsive to the
contents of the ihstructiod class field, the opcode field, and

the function seéelect f;éid of a present - instruction being

executed.

5 1. Integer Operations
For example, when the instruction class, the opcode, and
function select indicate that an integer register-to-register
addition is to be performed, the integer functio?al ﬁnit may be
responsive thereto to perform the indicated operation, while the

floating point functional unit and the Boolean functional unit

may be responsive thereto to not perform the operation. As will

be understood from the cross-referenced applications, however,

£z

the floating point functional unit 68 is equipped to perform both

v

ok

floating point and integer operations. Also, the functional

15 units are constructed to each perform more than one instruction

i
£

simultaneously.

The integer functional unit 66 performs integer functions

only. Integer operations typically involve a first sourxce, a
second source, and a destination. A given integer instruction

20 will specify a particular operation to be performed on one or'
more source operands and ﬁill sﬁecify thag the result of the
integer operation is to be stored at a given destination. In -

some instructions, such as address calculations employed in
load/store operations, thé sources are utilized as a base and

25 an index. The integer functional unit 66 is coupled to a first

bus 72 over which the integer functional unit 66 is connected to

WP2/RCC/SHOS/7988. 004 p,//f:’ZL 22-
Attorney Docket No.: SMOS7988/MCF/GBR/RCC

25

® @

-23-
a switching and multiplexing control (SMC) unit A 74 and an SMC

unit B 76. Each integer instruction executed by the integer

functional unit 66 will specify whether each of its sources and

destination reside in register set A or register set B.

Suppose that the IEU 10 has received, from the instruction
fetch unit (not shown), an instruction to perform an integer

register—to-registér ‘addition. In various embodiments, the

instruction may specify a register bank, perhaps even a separate '

bank for each source and destination. In one embodiment, the

instruction I(] is limited to a thirty-two-bit length, and does

not contain ény indication of which register bank 16-0 through
16-n is involved in the inst;uction; Rather, the bank selector
unit 78 controls which'register bank is presently active. In
one embodiment, the bank selector unit 78 is responsive to one
or more bank selection bits in a status word (not shown) within
the IEU 10.

In ordef to perform the integer adaitioq instruction, the
ihteger functiopallunit 66 1s responsive to the identification
in I{14:10] and I{4:0] of the first and secoﬁd source registers.

The integer functional unit 66 places an identification of the

"first and second source registers at ports Sl and 82,

respectively, onto the integer'funcﬁional unit bus 72 which is
coupled to both Sﬁc units A and B 74 and 76. In one embodiment,
the SMC units A and B are each coupled to receive B0-2 from the
instruction I(}. In one embodiment, a zero in any respective Bn
indicates register set A, and a one indicates register set B.
During 1load/store oper§tions, fhe source ports of the integer

WP2/RCC/ SHOS/7988. 004 -Page 23-
Attorney Docket No.: SMOS798B/MCF/GES/RCC

® @
. ‘ J
-24-
and floating point functional units 66 and 68 are utilized as a
base port and an index port, B and I, respectively. .,
After obtain_ing the first and second operandfs from the
indicated register sets on the bus 72, as explained below, the
S integer functional unit 66 performs the indicated operation upon
those operands‘, and provides the result' at port D onto thg
integer functional unit bus 72. The SMC ﬁnits A and B are
responsive to BO to route the result to the a_ppropriate régister
set A or B.
Tﬂe SMC unit B is further responsive to the instruction

class, opcode, and function selection to control whether operands

are read from (or résults are stored to) either a floating point

register RF[] or an integer register RB[]. As indicated, in one
"embodiment, the registers RF[] may be sixty-~four bits wide while

15 the registers are RB{] are only thirty-two bits wide. Thus, SMC

£ .8
RS

unit B controls whether a word or a double word is written to the

register set RFB[]. Because all registers within register set
A are thirty—two bits wide, SMC unit A need not include means for
controlling the wldth of data transfer on the bus 42.

20 All data on the bus 42 are thirty-two bits wide, but other)
sorts of complexities exist within register set A. The IEU mode
integer switch 34 is responsive to the mode control unit 44 of
thé execution engine 14 to control whether data on the bus 42 are
connected through to bus 36, bus 38 or bus 40, and vice versa.

25 IEU mode integer switch 34 is further responsive ¢to
I(20:16}, I{14:10]}, and I{4:0]. If a given indicated destination

or source is in RA[23:0], the IEU mode integer switch 34

WP2/RCC/SMQS/7388. 004 -Page 2¢
Attorney Docket Ne.: SHOS7988/MCF/GBR/RCC

® @
w ’ ’ ﬁ,)

-25-
automatically couples the data between lines 42 and 36. However,
for‘ registers RA(31:24], the IEU mode integer ,switch 34
determines whether data on liﬁe 42 is connected tofline 38 or
line 40, and vice versa. When interrupts are enabled,‘IEU mode

] integer switch 34 connects the SMC unit A to the second subset
28 of integer registers RA({31:24]. When iﬂ%errupts are disabled,
the IEU méde integer swifch 34 connects the SMC unit A to ﬁhe
shadow registers RT([31:24]. Thus, an instruction executing

within the integer functional unit 66 need not be concerned with

7%

10 . whether to address RA[31:24] or RT{31:24]. It will be understood
that SMC unit A may advantageously operate identically whether

it is being accessed by the integer functional unit 66 or by the

|

floating point functional unit 68.

W

S

2. Floating Point Operations

The floating point functional unit 68 is responsive to the

class, opcode, and function select fields of the instructioh, to
perform floating point operations. The S1, 82, and D ports

‘operate as described for the integer functional unit 66. SMC

20 unit B is responsive to retrieve floating'point operands from,
and to write numerical floating point results to, the floating

point registers RF[] on bus 52.

3. peratio
25 SMC unit C-80 is responsive to the instruction class,
opcode, and function select fields of the instruction I{]. When

SMC unit C detects that a comparison operation has been performed

WP2/RCC/SMOS/7988. 004
Attorney Docket No.: SWOS7988/MCF/GBR/RCC

o ®

W)

-26-

by one of the numerical functional units 66 oxr 68, it wiites the
Boolean result over bus 56 to the Boolean register indicated at
the D port of the functional unit which performed_the’;qmparison.

The Boolean functional unit 70 does not performféomparisonf

S instructions as do the integer and floating point functional
units 66 and 68. Rather, the Boolean functional unit 70 is only
used in peiforming bitwise 1logical combination of Boolean
register contents, according to the Boolean functions listed in

3 Table 2.

B

i0

7 TABLE 2

Boolean Functiomns
1[23.,22.9,81 Boolean result calculation i

0000 ZERO -
0001 S1 AND S2 '

. 0010 S1 AND (NOT S2)

= 0011 s1

?i 0100 {NOT S1) AND S2

20 0101 s2

e 0110 S1 XOR 82

13 0111 S1 OR S2

HEH 1000 S1 NOR S2
1001 S1 XNOR S2

25 1010 . NOT S2
1011 S1 OR (NOT S2)
1100 NOT S1
1101 (NOT S1) OR S2
1110 . S1 NAND S2

30

1111 ONE

/-‘—\
The advantage which the present invention obtains by having

35

a plurality of homogenous Boolean registers, each of which is

individually addressable as the destination of a Boolean

operation, will be explained with reference to Tables 3-5. Table
3 illustrates an example of a'segment of code which performs a
conditional branch based upon a complex Boolean function. The

wWP2/RCC/SNOS/7988. 004
Attorney Docket No.: SMOS7988/MCF/GBR/RCC

@ @ =

-27-~
complex Boolean function includes three portions which are OR-ed

together. The first portion includes two sub-portions, which

s
4

are AND-ed together.

S TABLE 3
Example of Complex Boolean Function

@% RA[% 2= 0; -

1 | i

2 IF (((RA[2] = RA(3]) AND (RA[4] > RA[S])) OR
10 ‘3 (RA[{6] < RA[7]) OR

4 (RA[8] <> RA[9])) THEN

5 X()

6 ELSE
= 7 Y();
35 8 RA{10] := 1;

Table 4 illustrates, in pseudo-assembly form, one likely -

method by which previous microprocessors would perform the

i
i

function of Table 3. The code in Table 4 is written as though

w
N
(=]

e
il

i

it were constructed by a compiler of at least normal intelligence

AT

1!
{)
L

operating upbn the code of Table 3. That is, the compiler will

recognize that the condition expressed in lines 2-4 of Table 3

A

is passed if any of the three portions is true.

WP2/RCC/SMOS/7988. 004
Attorney Dockst No.: SMOS7988/MCF/GBR/RCC

~
“ ~
o e

“)
— ' -28-
TABLE 4
Execution. of Complex Boolean Function
KIB i : » Without Boolean Register Set
5 1 START LDI RA[1],0
2 TEST1 CcMP RA{2],RA[3]
3 BNE TEST2
4 CMP RA[{4],RA[S]
5 BGT DO_IF -
10 6 TEST2 CMP RA[6],RA[7]
: 7 ~ BLT DO_IF
8 TEST3 CMP Ra(8],RA[9]
9 BEQ DO_ELSE
10 DO_TIF JSR ADDRESS OF X()
11 JMP PAST_ELSE
12 DO_ELSE JSR ADDRESS OF Y()
13 PAST ELSE LDI rRa[10],1

The assiéﬁﬁéht at line 1 of'Table 3 is performed by <the
<20 “load immediate" statement at lipe 1 of Table 4. The first
2 portion of the complex Boolean condition, expressed at line 2
. of Table 3;,is represented by the statements in lines 2-5 of

Table 4. To test whether RA[2] equals RA[3], the compare

statement at line 2 of Table 4 performs & subtraction of RA[2]

from RA[3] or vice versa, depending upon the implementation, and
may or may not store the result of that subtraction. The

important function performed by the comparison statement is that

the zero, minus, and carry flags will be appropriately set or

cleared.

30

The conditional branch statement at line 3 of Table 4
branches to a subsequent portion of code upon the condition that
RA[(2] did not equal RA({3]. If the two were unequal, the zero
flag will be clear, and there is no need to perform the second.
sub-portion. The existence of the conditional branch statement
35 at line 3 of Table 4 prevents the further fetching, decoding, and

WP2/RCC/S¥15/7988. 004 Page/28-
Attorney Docket No.: SMOS7588/MCF/EZR/RCC V/P

.. ' %
@ @

-29-.

executing of any subsequent statement in Table 4 until the
results of the comparison in line 2 are known, causing;a pipeline
stall. If the first sub-portion of the first portioﬁ.(TESTl) is
passed, the second sub-portion at line 4 of Table 4 then compares
5 RA[4] to RA[S], again setting and clearing the appropriate status

flags. '
If RA[2] equals RA[3], and RA[4] is greater than RA[S],
there is no need to test the ;emaining two portions,(TESTz and
= TEST3) in the complex Boolean function, and the statement at
- 10 Table 4, line 5, will conditionally branch to the label DO_TIF,
s to perform the operation insidé the *IF" of Table 3. However;
~ if the first portion of the test is failed, additional processing

is required to determine which of the ®"IF® and “ELSE" portions

should be executed.

The second portion of the Boolean function is the comparison

of RA[6] to RA[7], at line 6 of Table 4, which again sets and

clears the appropriate status flags. If the condition "less
than® is indicated by the status flags, the complex -Boolean

function is passed, and execution may immediately branch to the

20 DO_IF label. In various prior microprocessors, the "less than*
| condition may be tested by examining the minus flag. If RA[7]
was not less than RA[6], the third portion of the test must be
performed. The statement.at line 8 of Table 4 compares RA[8] to
RA[9].. If this comparison is failed, the "ELSE*" code should be

25 executed; otherwise, execution may simply fall through to the
“IF* code at line 10 of Table 4, which is followed by an

additional jump around the *ELSE®" code. Each of the conditional

WP2/RCC/SMOS/7988. 004

-Page £9-
Attoraey Docket No.: SMOS7938/MCF/GBR/RCC

v

30

35

-30~

branches in Table 4, at lines 3, 5, 7 and 9, results in a

separate pipeline stall, significantly increasing the,processing

s

time required for handling this complex Boolean funétion.

The greatly improved throughput which results from employing

S the Boolean register set C of the present invention will now
readily be seen with specific reference to Table 5.

TABLE S
Execution of Complex Boolean Function
With Boolean Register Set

1 START LDI RA[1],0
2 TEST1 CMP RC[11],RA[2]),RA[3],EQ
3 . CMP RC[12],RA[4]),RA[S5],GT
4 TEST2 CcMP RC[13),RA(6]},RA[7],LT
S5 TEST3 . CMP . RC[14],RA[8],RA[9],NE
6 COMPLEX AND RC{15],RC{11],RC(12]
7 - OR RC[16],RC[13],RC[14]
8 OR RC{17],RC[15]),RC[16]
9 " BC RC[17},DO_ELSE

DO_IF - JSR ADDRESS OF X()

: JIMP PAST_ELSE
DO_ELSE JSR ADDRESS OF Y()
PAST_ELSE LDI RA[10],1

Most notably seen at lines 2-5 of Table 5, the Boolean
register set C allows the microprocessor to perform the three

test portions back-to-back without intervening branching. Each

Boolean comparison specifies two operands, a destination, and a

Boolean condition for which to test. For example, the comparison

at line 2 of Table S5 compares the contents of RA[{2] to the
contents of RA[3], tests them forAequality, and stores into
RC{11] the Boolean value of the result of the comparison. Note
that each comparison of the Boolean function stores its
respective intermediate results in a separate Boolean register.

As Will Dbe understood with reference to the above-referenced

WP2/RCC/SHOS/7988. 004 ’
Attoraey Docket Ko.: SMOS7988/MCF/GBR/RIC

20

25

X .
.‘ .‘s
- _)
-31-
related applications, the IEU 10 is capable of simultaneously
performing more than one of the comparisons. ;
After at least the first two comparisons at. lines 2-3 of

Table 5 have been completed, the two respec_tive comparison

results are AND-ed together as shown at line 6 of Table 3.

RC[15] then holds the result of the first portion of the test.

The re'suits of the second and third sub-portions of the Boolean

function are OR-ed together as seen in Table 5, line 7. It will

be understood that, because there are no data dependencies

involved, the AND at line 6 and the OR-ed in line 7 may be

performed in parallel. Finally, the results of those two

operations are OR-ed together as seen at line 8 of Table S. It
will be understood that register RC[17] will then contain a

Boolean value indicating the truth or falsity of the entire

complex Boolean function of Table 3. It is then possible to

perform a single conditional branch, shown at line 9 of Table 5.
In the mode shown in Table S5, the method branches to the “ELSE®
code if Boolean register RC[17] is clear, indicating that the

complex functlon was failed. The remalnder of the code may be

the same as it was without the Boolean register set as-seen in

Table 4.

The Boolean functional unit 70 is responsive to the

instruction class, opcode, and function select fields as are the

other functional wunits. Thus, it will be understood with

reference to Table 5 again, that the integer and/or floating

point functional units will perform the instructions in lines 1-5

and 13, and the Boolean functional unit 70 will perform the

WP2/RCC/SH0S/7988. 004
Attorney Docket No.: SMOS7988/WCF/GBR/RCC

20

25

o @

(-)
—35-
Boolean bitwise combination instructions in lines 6-8. The

control flow and branching instructions in line 9-}12 will be

performed by elements of the IEU 10 which- are not shown in

Fig. 1.
IIXI. DATA PATHS -
Figs. 2-5 illustrate further details of the data paths

within the floating point, integer, and Boolean portions of the

IEU, respectively.

A, loating Point Portion Data Pa

As.seen in Fig. 2, the register set FB 20 is a md%ti-ported
register set. 1In one‘embodiment, the register set FB 20 has two
write ports WFB0O-1, .and five read ports RDFB0-4. The-floating
point functional unit 68 of Fig. 1 is comprised of the ALU2 102,
FALU 104, MULT 106, and NULL 108 of Fig. 2. All elements of Fig.
2 except the register set 20 and the elements 102-108 comp.risé

the SMC unit B of Fig. 1.

External, bidirectional data bus EX_DATA[] provides data to

the floating point load/store unit 122. Immediate floating point

data bus ﬁDF_IMEDt] provides data from a *load immediate*
instruction. Other immediate floating point data are provided
on busses RFF1_IMED an& RFF2_IMED, such as is involved in an *“add
immediate® instruction. Data are also provided on bus

EX_;SR_D‘I‘[], in response to a "special register move" instruction.

Data may also arrive from the integer portion, shown in Fig. 3,

on bussgs 114 and 120.

WP2/RCC/SHOS/7988. 004 /rmﬂu
Attorney Dacket No.: SKOS7938/MCF/GBR/RCC

20

25

. .\.

i

-33-)

The floating point register set’s two write ports WFBO and
WFB1 are coupled to write multiplexers 110-0 and 110-1,
respectively. The;wfite multiplexers llorredEive dat; from: <the
ALUO or SHFO of the integer portion of Fig. 3; the FALU; the
MULT; the ALU2; either EX SR DT[] or 'LDF_IMED({]; and
EX DATA[]. Those skilled in the a;twwill‘understand that éontrol .
signal§ {not shown) determine which input is selected at each
port, and address signals (not shown) determine to which register
the input data are written. Multiplexer control and register
addressing are within the skill of persons in the art, and will
not be discussed for any multiplexer or register set in the
present invention.

The floating point register set’s five read ports RDFBO to
RDFB4 are coupled to . read multiplexers 112-0 to 112-4,
respectively. The read multiplexers each also receives data
from; either EX_SR;DT[].or LDF_IMED{], on load immediate bypass
bus 126; a load external dafa bypass bus 127, which allows
external load data to skip the register set FB; the oufput of
the ALU2 102, _.which performs---nen-multiplication ---integer -
operations; the FALU 104, which performs non-multiplication
floating point operations; the- MULT 106, which performs
multiplication 6perations; and either the ALUO 140 or the SHFO
144 of the integer portion shown in Fig. 3, which respectively
perform non—mu;tiplication integer operations and shift
operations. Read multiplexers'llz-l and 112-3 alsﬁlreceive data

from RFF1_IMED(] and RFF2_IMED([], respectively.

WP2/RCC/SM0S/7988. 004
Attorney Docket No.: SMOS7983/MCF/GBR/RCC

Al

il
i

i
-

15

20

25

N
N Y

-34-

Each arithmetic-type unit 102-106 in the floating point

portion receives two inputs, from respective sets of first and

second source multiplexers S1 and S2. The first soﬂrce of each
unit ALU2, FALU, and MULT comes from the output of either read
multiplexer 112-0 or 112-2, and the second source comes from the
output of either read multipiexer 112-1 or 112-3.— The sources
of the FALU and the MULT may also come from the integer portion
of Fig. 3 on bus 114.

The resu;ts of the ALU2, FALU, and MULT are provided back
to the write multiplexers 110 for storage into the floating point
registers RF{], and also to the read multipléxers 112 for re-use
as operands of subsequent operations. The FALU also outputs a
signal FALU_BD indicating the Boolean result of a floating point
comparison operation. FALU_BD is calcuiated difectly from
internal zero and sign flags of the FALU.

Null byte tester NULL 108 performs null byte testing
operations upon an operandAfrom a first source multiplexer, in
one mode that of the ALU2. NULL 108 outputs a Boolean signal
NULLB_BD indicating- whether- the thirty-two-bit first source
operand includes a byte of value zero.

The outputs of read multiplexers 112-0, 112-1, and 112-4 are
provided to the integer portion (of Fig. 3) on bus 1}8. The
output of read multiplexer 112-4 is also provided as STDT_FP(]
store data to the floating point load/store unit 122.

Fig. 5 illustrates further details of the control of the

S1 and S2 mﬁltiplexers. As seen, in one embodiment, each §S1

multiplexer may be responsive to bit Bl of the instruction I[],

WP2/RCC/SM0S/7988. 004 /7

-Pagle 54,
Attorney Docket Ko.: SWMOS7988/MCF/GBR/RCC (j

%
£
T
i

20

25

(g e
| ,

\; J

-35- .
and each $§2 multiplexer may be responsive to bit B2 of the
instruction I{]. The S! and S2 multiplexers select .,the éources
for the various functional units.: The sources ma/y come from
either of the register files, as controlled by the Bl and B2 bits
of the instruction itself. Additionally, each register file
includes two read ports from which the sources may come, as

controlled by hardware not shown in the Figs.

B. n or D P

- As | seen in Fig. 3, the register set A 18 1is also
multi-ported. In one embodiment, the register set A 18 has two
write ports WAO-1, and five reaé. po:.;ts RDA0-4. The integer
functional unit 66 of Fig. 1 is comprised of the ALUO 140, ALU1
142, SHFO 144, and NULL 146 of Fig. 3. All elements of Fig. 3
except the register set 18 and the elements 140-146 comprise the
SMC unit A of Fig. 1.

External data ‘bus EX DATA[] provides data to the integer
load/store unit 152. Immediate integer data on bus LDI_;iMED[]
are provided in _respo'nse. to a *“load immediate®" instruction.
Other immediate integer data are provided on busses RFA1_IMED and
RFA2 IMED in response to non-load immediate instructions, such
as an "add immediate*. Data are also providéd on bus EX SR _DT{]
in respon.se to a “special register move® instruction. Data may
also arrive from the floating point portion (shown in Fig. 2)
on busses 116 and 118. |

The integer register set’s two write ports WAO and WAl are

coupled to write multiplexers 148-0 and 148-1, respectively. The

«52/RSC/SHIS/7988. 004 {ge/? - /

S S b meromans Poct -8 &1 . CUACTOADD ZiIIAT 2AO0B 2B AN

20

25

L~
C] @&

—r

-36-

write multiplexers 148 receive data from: the FALU or MULT of
the floaﬁing point portion (of Fig. 2); the ALUO; ; tle ALU1;
the SHFO; either EX SR DT[] or LDI_IMED(]; and ExiDATA[].

The integer register set’s five read ports RDAO to RDA4 are
coupled to read mulltiplexers' 150-0 to 150-4, respectively. Each
read multiplexer also receives data from: either EX_SR DT[] or
LDI_IMED(] on load immediatel bypass bus 160; a load external
data bypass bus 154, which allows external load data to skip thg
register set A; ALUO; ALU1l; SHF0; and either the I-;ALU or the
MUL'I" of the floating point portion (of Fig. 2). Read
multiplexers 150-1 and 150-3 also receive data from RFA1l_IMED(]
and RFA2 IMED([], respectively. .

Each arithmetic-typé unit 140-144 in the integer porf':ion
receives two inputs, from respective sets of first and second
source multiplexers S1 and S2. The first source of ALUO comes
from either the output of read multipiexer 150-2, or a

thirty-two-bit wide constant zero (OOOOhex), or floating point

read multiplexer 112-4. The second source of ALUO comes from

either read multiplexer 150-3 or floating point read multiplexer
112-1. The first source of ALUl comes from either read
multiplexer 150-0 or IF_PC[]. IF_PC{] is used in ca'.lculating a
return address neéded by the instruction fetch unit (not shown),
due to the IEU‘s ability to perform instructions in an
out-of-order sequence. The second source of ALU1 comes from

either read multiplexer 150-1 or CF_OFFSET[]. CF_OFFSET(] is

used in calculating a return address for a CALL instruction, also

due to the out-of-order capability.

WP2/RCC/SMOS/7988. 004

{Page 36-
Attorney Docket No.: SHOS7988/UCF/GBR/RCC

o

o ®

J

-37-

The first source of the shifter SHFO 144 is from either:
floating point read multiplexer 112-0 or 112-4; or any integer
read multiplexer 150. The second source of SHFO is.firom' éither:
floating point read multiplexer 112-0 or 112-4; ::':>r inéeger read

S multiplexer -150-0, 150-2, or 150-4. SHFO takes a third input
"from a shift amount multiplexer (SA). The third input controls
how far-to sh:i;ft, and is taken by the Sa multriplexer from either:
floating point read multiplexer 112-1; integer read multiplexer
150-1 or 150-3; or a five-bit wide constant thirty-one (111112

or 3135)- The shifter SHFO requires a fourth input from the size

multiplexer (S). The fourth input controls how much data +to

shift, and is taken by the S mulf:iplexer from either: read

multiplexer 150-1; read multiplexer 150-3; or a five-bit wide -

constant sixteen (100002 or 1610).

15 The results of the ALUO, ALUl, and SHF0 are provided back

to the write multiplexers 148 for storage into the integer

H
t

il

registers RA[], and also to the read multiplexers 150 for re-use
as operands of subsequent operations. The output of either ALUO
or SHFO is provided on_bus. .120 to .the-floating point portiofx of
20 Fig. 3. The ALUO and ALUl also output signals ALUO_BD and
ALU1l_BD, respectively, indicating the Boolean results of integer
comparison operations. ALUO_BD and ALUl_BD are calculated
direétly from the zero and sign flags of the respective
functional units. ALUO also outputs signals EX_TADR([] and
25 EX_VM_ADR. EX_‘I‘I;DR[] is the target address generated for an
absolute branch instruction, and is sent to the IFU (not shown)

for fetching the target instruction. EX_VM_ADR[] is the virtual

WP2/RCC/SMOS/7988. 004

u-l’age 3
Attorney Docket No.: SWOS7988/MCF/GBR/RCC

C] @

)

e

-38~
address used for all loads frdm memory and stores to memory, ang
is sent to the VMU (not shown) forladdress translation.’
Null byte tester NULL 146 performs - null bfke testing
operations upon an opérand?froﬁ‘a first source multiplexer. In
S one embodiment, the operand is from the ALUO. NULL 146 outputs
a Boolean signal NULLA BD indicating whether the thirty-two-bit
first source operand includes a byte of value zeré.
The outputs of read multiplexers 150-0 and 150-1 are
provided to the floating point portion (of Fig. 2) on bus 114.
The output of read multipiexer 150-4 is also provided as

STDT_INT[] store data to the integer load/store unit 152.

A control bit PSR(7] is provided to the registei set A 18.

It is this signal which, in Fig. 1, is provided from the mode

Wy

i

control unit 44 to the IEU mode integer switch 34 on.line 46.

I

%35 The IEU mode integer switch is internal to the register set A 18

;é as shown in Fig. 3.

= Fig. 6 illustrates further details of the control of the S1
and S2 multiplexers. The'signal ALUO_BD

20 C. Boolean Portion Data Paths

As seen in Fig. 4, the register set C 22 is also
multi-ported. 1In one embodiment, the register set C 22 has two
write ports WCO-1, and'five read borts RDAO-4. All elements of
Fig. 4 except the register set 22 and the Boolean combinational

25 unit 70 comprise the SMC unit C of Fig. 1.

The Boolean register set’s two write ports WCO and WC1l are

coupled to write multiplexers 170-0 and 170-1, respectively. The

WP2/RCC/SHOS/7988. 004 pize - ,///”\
At tanrnas Nook o a2 I T, OM ree A - A .

mo

i

E T T
wn

&

20

25

® @

S . ' J
~-39-

write multiplexers 170 receive data frém: the ocutput of the
Boolean éombinational unit 70, indicating the Boolean result of
a Boo,l_e"an" éombinational operation; ALUO_BD from ‘{:he integer
po'rtibn::'of Fig. 3, i.ndicating the Boolean result of an integer
comparison; I-‘ALU_éD from the floating point portion of Fig. 2,
indicating the Boolean result of a floating point c.omparison;
eith‘er ALUl_BD_P from ALU1l, indicating .the results of a compare
instruction in ALUl, or NULLA BD from NULL 146, indicating a null
byte in the integer portion; and either ALU2 BD_P from ALU2,
in&icating the results of a compare oper;ation in ALU2, or
NULLB_BD from NULL 108, indicating a null byte in the floating
point portion. 1In one mode, the ALUO_BD, ALUl_BD, ALU2_BD, and
FALU_BD signals are not taken from the data paths, but are
calculated as a fu‘nction‘vof the zero flag, minus f£lag, carry
flag, and other condition flags in the PSR. In one mode, wherein
up to' eigﬁt instructions may be executing at one instant in the
IEU, the IEU maintains up to eight PSRs.

The Boolean register set C is also coupled to bus
EX_ SR DT[], for use with "special register move*® instructions.
The CSR may be written or read as a whole, as though it were a
single thirty-two-bit register. This enables rapid saving and
restoration of machine state information, such as may be
necessary upon certain drastic system .erx:ors or upon certain
forms of grand scale context switching.

The Boolean register set’s five read ports RDCO fo RDC3 are

coupled to read multiplexers 172-0 to 172-4, respectively. The

read multiplexers ;72 receive the same set of inputs as the write

WP2/RCC/SHOS/7988. 004 -9/3; 39/ /‘W
RO O o o o o ~ 2 & B8 0 asesm R 82 P

=5

=5

~ N
-3 N
. § ' :

-40-

multiplexers 170. receive. The Boolean combinational unit 70
receives inputs from read multiplexers 170-0 and 170-1. Read
multiplexers 172-2 and 172-3 respectively provi::ie signals
BLBP_CPORT and BLBP_DPORT. BLBP_CPORT is used as the basis for
conditional branching instructions in the IEU. BLBP_DPORT is
used in the *"add with Boolean*® inst:rﬁuction, which sets an integer
register in the A or B set to zero or one (with ieading zeroes),
depending upon the content of a register in the C set. Read port
RDC4 is presently unused, and is reserved for future enhancements

of the Boolean functionality of the IEU.

IV. CONCLUSION

While the features and advantages of the present invention
have been described with respect to particular embodiments
thereof, and in varying degrees of detail, it will be appreciaéed
that the invention is not limited to the described embodiments.

The. following Claims define the invention to be afforded patent

coverage.

. .)
WP2/RCC/SMOS/ . / / /
WP2/RCC/SMOS/7988.004 Page 40

	1998-11-10 Specification

